Chris Booth-Morrison

From Northwestern University Center for Atom-Probe Tomography
Revision as of 17:29, 3 July 2008 by Chris Booth (talk | contribs)
Jump to navigation Jump to search
Chris Booth-Morrison
Research: Evolution of Precipitates in Ni-Based Superalloys
Education: B.Eng Metallurgical Engineering, McGill University
Publications: Publications by Booth-Morrison in our database


Chris Booth-Morrison
Materials Science and Engineering
2220 North Campus Drive
Evanston, IL 60208
Phone: 847.491.5948
Fax: 847.467.2269

I am a fourth-year graduate student studying the temporal evolution of nickel-based superalloys by atom-probe tomography (APT).


We are interested in studying the kinetic pathways which lead to the decomposition of the γ-matrix phase by the formation of nanometer-sized γ'-precipitates. APT of the Ni-Al-Cr nanostructures provides an in-depth look at the compositional and nanostructural evolution of the γ’-precipitate phase as it evolves. The decomposition of the γ-matrix phase, from the early stages of solute-rich γ'-nuclei formation, to the subsequent growth and coarsening of γ’-precipitates, can be accessed within the framework of classical nucleation, growth and coarsening theories. The effects of varying the solute concentrations on the temporal evolution of Ni-Al-Cr alloys can be determined in order to provide a more quantitative understanding of the kinetic pathways that lead to phase separation.


The addition of Ta to the ternary Ni-Al-Cr system results in the formation of a large volume fraction of γ'-precipitates which demonstrate very strong solute partitioning. Ta has been shown to be a strong γ'-precipitate former and solid-solution strenghtener and is known to improve high-temperature strength, creep, fatigue and corrosion properties, all of which are desirable for use in nickel-based superalloys in high-temperature applications.