NUCAPT Literature Database

From NUCAPT

1–1 of 1 record found matching your query (RSS):


Select All    Deselect All
 |   | 
Details
   print
  Record Links
Type Caballero, F.G.; Yen, Hung-Wei; Miller, M.K.; Yang, Jer-Ren; Cornide, J.; Garcia-Mateo, C.
  Publication Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels Volume Journal Article
Pages 2011
  Abstract Acta Materialia  
  Corporate Author  
Publisher In Press  
Editor Corrected Proof
  Summary Language Series Editor Bainite; Steels; Three-dimensional atom probe; Transmission electron microscopy  
Abbreviated Series Title A displacive transformation involves the motion of a glissile interface. As in work hardening, its motion can be halted by defects such as dislocations, stacking faults or twins in the austenite. The defects are created when the shape deformation accompanying bainite growth is accommodated by plastic relaxation of the surrounding austenite. The growing plate stops when it collides with the austenite grain boundary. Because transformation from strong austenite leads to fine plates, alloys can be designed such that the bainite transformation is suppressed to low temperatures (125350 °C), leading to a nanoscale bainitic microstructure. Complementary high-resolution transmission electron microscopy and atom probe tomography have provided new experimental evidence on the accommodation of transformation strain, a subject critically relevant to understanding the atomic mechanisms controlling bainitic ferrite growth.
  Series Issue ISSN  
Medium
  Expedition Notes  
Call Number  
Contribution Id  
Serial URL ISBN  
1359-6454 <p><br/>A displacive transformation involves the motion of a glissile interface. As in work hardening, its motion can be halted by defects such as dislocations, stacking faults or twins in the austenite. The defects are created when the shape deformation accompanying bainite growth is accommodated by plastic relaxation of the surrounding austenite. The growing plate stops when it collides with the austenite grain boundary. Because transformation from strong austenite leads to fine plates, alloys can be designed such that the bainite transformation is suppressed to low temperatures (125-350��C), leading to a nanoscale bainitic microstructure. Complementary high-resolution transmission electron microscopy and atom probe tomography have provided new experimental evidence on the accommodation of transformation strain, a subject critically relevant to understanding the atomic mechanisms controlling bainitic ferrite growth.</p> no NU @ karnesky @ 5 11143
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Personal tools
Seidman Group
Atom-Probe Tomography
Search
Quick Search: