|   | 
Title Zhou, X.W.; Sills, R.B.; Ward, D.K.; Karnesky, R.A.
Year Atomistic calculations of dislocation core energy in aluminium
Abbreviated Journal Journal Article
Issue 2017 Keywords Physical Review B
Thesis 95
Place of Publication Language 054112
Original Title
Series Title A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle \textbackslashBeta between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on \textbackslashBeta as the dislocation elastic energy: Ec = A.sin2\textbackslashBeta + B.cos2\textbackslashBeta, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and core radius of a perfect versus an extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of dislocation-mediated plasticity.e accurately accounted for in models of dislocation-mediated plasticity. Series Volume
ISBN (up) Area
Serial Orig Record
no NU @ karnesky @ zhou_atomistic_2017 11519
Permanent link to this record